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Entropic origin of the growth of relaxation times in simple glassy liquids
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Transitions between ‘‘glassy’’ local minima of a model free-energy functional for a dense hard-sphere
system are studied numerically using a ‘‘microcanonical’’ Monte Carlo method that enables us to obtain the
transition probability as a function of the free energy and the Monte Carlo ‘‘time.’’ The growth of the height
of the effective free-energy barrier with density is found to be consistent with a Vogel-Fulcher law. The
dependence of the transition probability on time indicates that this growth is primarily due to an increase in the
difficulty of finding low-free-energy paths to other minima.@S1063-651X~98!12307-3#

PACS number~s!: 64.70.Pf, 02.70.Lq, 64.60.Ak, 64.60.Cn
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The dynamic behavior of supercooled liquids near
glass transition@1# is one of the most enigmatic problems
condensed matter physics. The most dramatic feature o
dynamics near the glass transition in so-called fragile s
tems@2# is an extremely rapid growth of the relaxation tim
t, which is reasonably well described by the Vogel-Fulch
law @3# t}exp@C/(T2T0)#, whereT0,Tg , the convention-
ally defined glass transition temperature at which the visc
ity attains a value of 1013 P. The apparent divergence oft at
T0 has led to speculations about the possibility of a t
thermodynamic transition at this temperature. This is a
suggested by the observation@4# that the temperatureTK ~the
so-called Kauzmann temperature! at which the entropy dif-
ference between the supercooled liquid and the equilibr
crystalline solid extrapolates to zero is very close toT0. The
closeness ofT0 and TK suggests that the growth of the r
laxation time near the glass transition is primarily entropic
origin. Heuristic arguments that attempt to relate the Vog
Fulcher law to entropic effects have been proposed by s
eral authors@5,6#. However, we are not aware of any calc
lation that provides an explicit demonstration of such effe
in simple model liquids.

In this paper we describe the results of a numerical inv
tigation that provides direct evidence for an entropic orig
of the growth of the relaxation time in simple liquids near t
glass transition. Our computations are based on a model
energy functional@7# for the hard-sphere system. We use
‘‘microcanonical’’ Monte Carlo~MC! method described be
low to study transitions between different ‘‘glassy’’ minim
of a discretized version of this free-energy functional. W
determine the probability of transition from one minimum
another as a function of the free-energy incrementD f ~the
excess free energy per particle measured from that at
original minimum! and MC ‘‘time’’ t. This allows us to de-
fine an effective barrier height that depends weakly ont. We
find that the growth of this effective barrier height with in
creasing density is consistent with a Vogel-Fulcher form
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propriate for a hard-sphere system. Our numerical res
about how the dependence of the effective barrier heightt
changes as the density is increased indicate clearly tha
growth of the barrier height~and the consequent growth o
the relaxation time! is primarily due to entropic effects aris
ing from an increase in the difficulty of finding low-free
energy paths~‘‘saddle points’’! that connect one glassy loca
minimum with another.

The free-energy functional used in our study is of t
form proposed by Ramakrishnan and Yussouff@7#:

F@r#5Fl@r0#1kBTF E dr$r~r !ln@r~r !/r0#2dr~r !%

2~1/2!E drE dr 8C~ ur2r 8u!dr~r !dr~r 8!G , ~1!

where dr(r )[r(r )2r0 is the deviation of the time-
averaged local number densityr(r ) from its valuer0 in the
uniform liquid state,Fl is the free energy of the uniform
liquid, T is the temperature, andC(r ) is the direct pair cor-
relation function@8# of the uniform liquid at densityr0. C(r )
is expressed in terms of the dimensionless densityn*
[r0s3(s is the hard-sphere diameter! through the Percus
Yevick approximation@8#, which is expected to be adequa
if r0 is not very high. The free energy of Eq.~1! may also be
used to describe other simple liquids with short-range, i
tropic interactions in the well-known ‘‘effective hard
sphere’’ approximation@8#.

The discretized version of this free-energy functional e
hibits @9# a large number of ‘‘glassy’’ minima~local minima
of F at which the density is inhomogeneous but aperiod!
for n* .nf* , wherenf* .0.85 is the density at which equi
librium crystallization occurs. Numerical studies@10,11# of
Langevin equations appropriate for this system show that
dynamic behavior is governed by thermally activated tran
tions among these glassy minima ifn* exceeds a ‘‘cross-
over’’ value that is close to 0.96. The time scales for su
transitions were estimated from a standard MC method
Ref. @12# and found to rapidly increase with increasing de
sity. Here we have used a different numerical method tha
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802 PRE 58CHANDAN DASGUPTA AND ORIOL T. VALLS
more efficient than the canonical MC method and provid
information about the origin of the growth of the time sca
of these thermally activated transitions. The increase of
time scale may be due to one or both of two factors:~a! an
increase of the heights of the free-energy barriers that s
rate a glassy minimum from the others and~b! an increase of
the difficulty in finding low-free-energy paths to othe
minima. Considering the free-energy functional as an eff
tive Hamiltonian for the system, these two factors may
called energetic and entropic@13#, respectively. The canoni
cal MC method does not provide much information about
relative importance of these two factors in the observ
growth of the time scales. As described below, the numer
method used in this study allows us to distinguish betw
energetic and entropic effects. It also allows us to follow
growth of the barrier-crossing time scale over about ten
cades, which would not be possible in a canonical MC c
culation.

We discretize our system on a cubic lattice of sizeL3 and
mesh constanth with dimensionless density variables d
fined asr i[r(r i)h

3. Periodic boundary conditions are use
and the constraint that the sum of the variablesr i must be a
constantN, the number of particles in the sample, is enforc
during the simulation. We define a dimensionless fr
energy per particlef @r# as

f @r#5bF@r#/n* L3a3, ~2!

wherea is the ratioh/s andb51/kBT.
Our numerical method, which may be called microcano

cal MC if the free-energy functional is considered to be
effective Hamiltonian, involves the following steps. Each r
is started from a glassy local minimum of the free ener
We choose a trial value of what we call the free-energy
crementD f and then perform a MC simulation in which w
sweep the sitesi of the lattice sequentially. At each step an
site, we pick another sitej at random from the ones that li
within a distances from the site i . We then attempt to
change the values ofr i andr j to p(r i1r j ) and (12p)(r i
1r j ), wherep is a random number distributed uniformly i
@0,1#. The attempted change is acceptedonly if the dimen-
sionless free energy after the change is less than Fmin
1ND f , whereFmin is the dimensionless free energybF at
the minimum where the simulation is started. This proced
generates a random sampling of configurations whose
energy lies withinND f of that of the glassy minimum unde
consideration. The simulation proceeds up to a maxim
time tm , of MC steps per site. At regular intervals along t
evolution of the system, we use a minimization procedure@9#
to determine whether the system has moved to the basi
attraction of a different local minimum of the free energ
Obviously, if ND f is smaller than the lowest-free-energ
barrier between the starting minimum and any other m
mum, the system remains in the basin of attraction of
starting minimum. AsD f is increased, one begins to fin
transitions to other accessible minima, that is, minima t
the system can find within a timet<tm , which are separated
from the initial one by a barrier of height less thanND f .
Repeating this procedure a number of times~typically 10–
20! for a fixed set of values ofn* , D f , and tm , we obtain
P(n* ,D f ,t), the probability of a transition to a differen
s
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minimum within timet for free-energy incrementD f , as the
fraction of the number of runs in which a transition is foun
This probability is calculated for a suitable range of values
n* , D f , andt and the whole procedure is repeated for seve
glassy minima of the free energy~see below!. We define a
‘‘critical’’ value D f c(n* ,t) of the free-energy increment a
the value ofD f for which P(n* ,D f ,t)50.5. Clearly,ND f c
represents an effective barrier height for transitions to ot
local minima. This is the quantity that we use to present
results.

We have used two sizesL515 andL512. In the first
case we have takena51/4.6 so thatL anda are incommen-
surate with a close-packed lattice and no crystalline m
mum of the free energy is found. The total number of inh
mogeneous minima is then about 10 and all of them exh
glassy structure as determined by the two-point correla
function of the local density. The minima we have used
our starting point in this case were also used in Ref.@12#.
These are the minima to which the system moves@11# in the
course of its time evolution under Langevin dynamics@10#
when it is started from the uniform liquid state. ForL512
we tooka50.25 so that the sample is commensurate. It
mits a crystalline minimum that has the lowest free ene
for the values ofn* considered here. The number of glas
minima is substantially larger~about 30! in this sample. Out
of those we chose a few with structure similar to that of t
minima of theL515 sample. For both cases, the minim
found at lower densities were ‘‘followed’’ to higher densitie
by running the minimization program at the higher dens
using the lower density configuration~which is of course not
a minimum at the higher density! as the starting point. The
values oftm are 15 000 forL515 and 8000 forL512. The
transition probability was calculated at time intervals of 50
in the first case and 2000 in the second case. In both ca
the density range covered was 0.94<n* <1.06. Higher val-
ues of n* were not considered because the Percus-Yev
approximation then becomes@8# inaccurate.

Typical results forP are shown in Fig. 1, where data fo
L512 andn* 51.04 are plotted for four different values oft.
The value ofD f was incremented in steps of 0.05, which

FIG. 1. Transition probabilityP ~see the text! as a function of
the free-energy incrementD f for four values of the timet. The data
shown are for aL512 minimum atn* 51.04. The values ofD f c

are indicated by the filled circles.
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also the estimated uncertainty in the determination ofD f c .
The transition probability grows from zero asD f is increased
and eventually saturates at one for sufficiently large value
D f . For a fixed value ofD f , the transition probability in-
creases ast is increased: Transitions to other minima a
more likely if the system is allowed to explore a larger nu
ber of configurations. SinceP is an increasing function o
bothD f andt, D f c(n* ,t) ~the value ofD f whereP50.5, as
defined above! decreases ast is increased. In agreement wit
the previously observed@12# growth of the barrier-crossing
time scale withn* , we find thatD f c is an increasing function
of n* .

The conclusion that entropic effects play a crucial role
the growth of the effective height of the free-energy barri
stems from the observation that thet dependence ofD f c
becomesstrongerasn* is increased~see Fig. 2!. The t de-
pendence ofD f c is clearly related to the probability of find
ing the saddle points that connect the starting minimum w
other minima. If such paths were relatively easy to find, th
the transition probability would be insensitive to the value
t as long as it is not very short. If, however, paths to oth
minima are few, a large number of configurations have to
explored before one of them is found. Thet dependence o
D f c would then be more pronounced and extend to lar
values oft. To make the idea more concrete, we ignore
correlations~which are short range in time! among the con-
figurations generated in a MC run and assume that they
resentt independent samplings of configurations with fr
energy less thanFmin1ND f . Let us also assume that th
system does not return to the basin of attraction of the s
ing minimum after a transition to a different basin of a
traction. We find that a return to the original basin of attra
tion is indeed very rare. The transition probability m
then be estimated asP(n* ,D f ,t)512@12p(n* ,D f )# t

.12exp(2tp), wherep(n* ,D f )!1 is the probability that a
randomly chosen configuration withbF<Fmin1ND f be-

FIG. 2. Plots ofD f c , obtained for aL515 minimum, against
(t/1000)20.35 for three values ofn* . The dashed lines are the be
straight-line fits. Similar plots for aL512 minimum are shown in
the inset.
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longs in the basin of attraction of a different minimum. O
expectsp to be zero ifD f <D f 0(n* ), whereND f 0 is the
height of the lowest free-energy-barrier, andp5g(n* ,D f
2D f 0) for D f .D f 0, where g(n* ,x) grows continuously
from zero asx is increased from zero. Combining this wit
the definition of D f c , we obtain the relation
g„n* ,D f c(n* ,t)2D f 0(n* )…5 ln 2/t. Our observation that
the differenceD f c(n* ,t1)2D f c(n* ,t2) for fixed t1,t2 in-
creaseswith n* then leads to the conclusion that the functi
g(n* ,x) decreases~i.e., the difficulty of finding paths to
other minima increases! asn* is increased at fixedx.

The observedt dependence ofD f c for all values ofn*
and all the minima in our study is well represented by

D f c~n* ,t !5D f 0~n* !1c~n* !t2a, ~3!

with a in the range 0.2520.40. Typical fits to this form with
a50.35 for two minima withL515 andL512 are shown in
Fig. 2. The values ofD f 0 obtained from such fits with a fixed
value of a are nearly independent ofn* , but exhibit a de-
pendence on the value ofa, varying between 0 and 0.5 fo
the L515 minimum and between 1.3 and 1.5 for theL
512 minimum of Fig. 2. The quantityc(n* ) increases with
n* . This corresponds to the functiong(n* ,x) having the
form g(n* ,x);A(n* )x1/a, with A(n* ) decreasing with in-
creasingn* . These results imply that~a! the lowest barrier
heightND f 0 is nearly independentof n* and~b! for a fixed
small positive value ofD f 2D f 0, the probability of finding a
saddle point to other minimadecreasesas n* is increased.
We conclude from these observations that the growth of
effective barrier height with increasingn* is primarily due to
an entropic mechanism associated with an increase of
difficulty in finding low-lying saddle points that connect di
ferent glassy local minimum. This conclusion is consiste
with the canonical MC results of Ref.@12#, where we found
that while the time scale of transitions between minima
creases dramatically withn* , the free-energy increment a
the transition point remains essentially independent ofn* .

Our results for the dependence ofD f c on n* are consis-
tent with the Vogel-Fulcher law@3#, which assumes the fol
lowing form @14# for our system:

FIG. 3. Dependence ofD f c(n* ,t515 000) onn* for L 5 15.
The dashed line shows the best fit to a Vogel-Fulcher form~see the
text!.



e

se

-
he

is
the
6
r-
the

to
nd
or

el-
sy
-

w-
al

arch
ili-

804 PRE 58CHANDAN DASGUPTA AND ORIOL T. VALLS
D f c~n* !5a1b/~nc* 2n* !, ~4!

wherea andb are constants andnc* is expected to be clos
to the random close-packing densitynrcp* .1.23. There is
some ambiguity in trying to fit our data to this form becau
our values ofD f c depend weakly on the timet. However, the
value ofnc* obtained from fits of our data forD f c(n* ,t) to
Eq. ~4! with fixed a is nearly independent oft. This is con-
sistent with the form of Eq.~3! if a5D f 0, b}t2a, and c
}1/(nc* 2n* ). D f 0 is indeed nearly independent ofn* and
the t dependence ofb and then* dependence ofc are in
agreement with the other two conditions. For theL515 case,
we can fit the data forD f c at t515 000 to the form of Eq.~4!
with a50(D f 050). The best fit, shown in Fig. 3, corre
sponds tonc* 51.225, very close to the expected result. T
best fit to theL512 data witha.1.0 ~the difference be-
tween the values ofD f 0 for theL512 andL515 minima is
about 1.0! also yields a similar value ofnc* . So we conclude
n
st

,

that the observed growth of the effective barrier height
consistent with the Vogel-Fulcher form. The increase in
effective barrier height asn* is increased from 0.94 to 1.0
is about 25kBT, corresponding to a growth of the characte
istic time scale of about ten orders of magnitude. Thus
range of time scales covered in our study is comparable
that used in Vogel-Fulcher fits of experimental data a
much wider than what can be achieved in standard MC
molecular dynamics simulations.

In summary, our study demonstrates that the Vog
Fulcher–type growth of relaxation times in simple glas
liquids is primarily entropic in origin, the underlying mecha
nism being an increase in the difficulty of encountering lo
lying saddle points that connect different glassy loc
minima of the free energy.

C.D. thanks the Supercomputer Education and Rese
Centre of Indian Institute of Science for computational fac
ties and ICTP, Trieste, for hospitality.
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