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Entropic origin of the growth of relaxation times in simple glassy liquids

Chandan Dasgupta
Department of Physics, Indian Institute of Science, Bangalore 560 012, India

Oriol T. Valls
School of Physics and Astronomy and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455
(Received 26 January 1998

Transitions between “glassy” local minima of a model free-energy functional for a dense hard-sphere
system are studied numerically using a “microcanonical” Monte Carlo method that enables us to obtain the
transition probability as a function of the free energy and the Monte Carlo “time.” The growth of the height
of the effective free-energy barrier with density is found to be consistent with a Vogel-Fulcher law. The
dependence of the transition probability on time indicates that this growth is primarily due to an increase in the
difficulty of finding low-free-energy paths to other minin{&1063-651X98)12307-3

PACS numbsgs): 64.70.Pf, 02.70.Lg, 64.60.Ak, 64.60.Cn

The dynamic behavior of supercooled liquids near thepropriate for a hard-sphere system. Our numerical results
glass transitiof1] is one of the most enigmatic problems of about how the dependence of the effective barrier height on
condensed matter physics. The most dramatic feature of thehanges as the density is increased indicate clearly that the
dynamics near the glass transition in so-called fragile sysgrowth of the barrier heighfand the consequent growth of
tems[2] is an extremely rapid growth of the relaxation time the relaxation timgis primarily due to entropic effects aris-

7, which is reasonably well described by the Vogel-Fulchering from an increase in the difficulty of finding low-free-
law [3] 7xexdC/(T—Ty)], whereTo<T,, the convention- energy pathg“saddle points”) that connect one glassy local
ally defined glass transition temperature at which the viscosminimum with another.

ity attains a value of 1§ P. The apparent divergence oft The free-energy functional used in our study is of the
T, has led to speculations about the possibility of a trugform proposed by Ramakrishnan and Yussquif
thermodynamic transition at this temperature. This is also

suggested by the observatiptl that the temperaturéy (the

so-called Kauzmann temperatur@ which the entropy dif- Flp]=Filpol+keT
ference between the supercooled liquid and the equilibrium

crystalline solid extrapolates to zero is very clos& o The _ f f , e ,

closeness offy and T suggests that the growth of the re- (172) | dr | dr'C(Jr=r'p(dp(r) |, (1)
laxation time near the glass transition is primarily entropic in

origin. Heuristic arguments that attempt to relate the Vogelwhere dp(r)=p(r)—po is the deviation of the time-
Fulcher law to entropic effects have been proposed by sevaveraged local number densjtyr) from its valuep, in the
eral authorg5,6]. However, we are not aware of any calcu- uniform liquid state,F, is the free energy of the uniform
lation that provides an explicit demonstration of such effectdiquid, T is the temperature, an@(r) is the direct pair cor-
in simple model liquids. relation functior{ 8] of the uniform liquid at density,. C(r)

In this paper we describe the results of a numerical invesis expressed in terms of the dimensionless density
tigation that provides direct evidence for an entropic origin=py0>(o is the hard-sphere diametahrough the Percus-
of the growth of the relaxation time in simple liquids near the Yevick approximatior{8], which is expected to be adequate
glass transition. Our computations are based on a model fred-p, is not very high. The free energy of E@.) may also be
energy functiona[7] for the hard-sphere system. We use aused to describe other simple liquids with short-range, iso-
“microcanonical” Monte Carlo(MC) method described be- tropic interactions in the well-known “effective hard-
low to study transitions between different “glassy” minima sphere” approximatior8].
of a discretized version of this free-energy functional. We The discretized version of this free-energy functional ex-
determine the probability of transition from one minimum to hibits [9] a large number of “glassy” minim@ocal minima
another as a function of the free-energy incremght(the  of F at which the density is inhomogeneous but aperipdic
excess free energy per particle measured from that at thfer n* >nf , wherenf =0.85 is the density at which equi-
original minimum and MC “time” t. This allows us to de- librium crystallization occurs. Numerical studi€s0,11] of
fine an effective barrier height that depends weakly.d0We  Langevin equations appropriate for this system show that the
find that the growth of this effective barrier height with in- dynamic behavior is governed by thermally activated transi-
creasing density is consistent with a Vogel-Fulcher form aptions among these glassy minimarif exceeds a “cross-

over” value that is close to 0.96. The time scales for such

transitions were estimated from a standard MC method in

*Also at the Condensed Matter Theory Unit, Jawaharlal NehruRef.[12] and found to rapidly increase with increasing den-
Centre for Advanced Scientific Research, Bangalore 560 064, Indisity. Here we have used a different numerical method that is

[ artotomip(r)ipg) - p(r)}
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more efficient than the canonical MC method and provides 1 o @ ¢
information about the origin of the growth of the time scale 4 2000 LRt
of these thermally activated transitions. The increase of this 08" 4000 D//

time scale may be due to one or both of two factdas:an T | = 6000 S

increase of the heights of the free-energy barriers that sepa- | = gooo /By . 1
rate a glassy minimum from the others ghlan increase of 0.6 - P J

the difficulty in finding low-free-energy paths to other 0 P .
minima. Considering the free-energy functional as an effec- 04 | - / .

tive Hamiltonian for the system, these two factors may be ' a .

called energetic and entropiit:3], respectively. The canoni- [

cal MC method does not provide much information about the 021 /a ) L

relative importance of these two factors in the observed ’ S0oa

growth of the time scales. As described below, the numerical o L ?L P P N
method used in this study allows us to distinguish between 14 15 16 1.7 18 19 2
energetic and entropic effects. It also allows us to follow the Af

growth of the barrier-crossing time scale over about ten de-

cades, which would not be possible in a canonical MC cal- FIG. 1. Transition probability® (see the tejtas a function of

culation. the free-energy incrementf for four values of the timeé. The data
We discretize our system on a cubic lattice of dizeand  shown are for =12 minimum atn*=1.04. The values oAf,

mesh constanh with dimensionless density variables de- & indicated by the filled circles.

fined asp;=p(r;)h®. Periodic boundary conditions are used

and the constraint that the sum of the variaglesust be a  minimum within timet for free-energy incrementf, as the

constaniN, the number of particles in the sample, is enforcedfraction of the number of runs in which a transition is found.

during the simulation. We define a dimensionless free-This probability is calculated for a suitable range of values of

energy per particlé[p] as n*, Af, andt and the whole procedure is repeated for several
glassy minima of the free enerdgee below. We define a
f[p]=BF[p]/n*L3%a% (2)  “critical” value Af.(n*,t) of the free-energy increment as
the value ofAf for which P(n*,Af,t)=0.5. Clearly,NAf.
wherea is the ratioh/o and 8= 1/kgT. represents an effective barrier height for transitions to other

Our numerical method, which may be called microcanonidocal minima. This is the quantity that we use to present our
cal MC if the free-energy functional is considered to be anresults.
effective Hamiltonian, involves the following steps. Each run ~ We have used two sizes=15 andL=12. In the first
is started from a glassy local minimum of the free energycase we have takea= 1/4.6 so that. anda are incommen-
We choose a trial value of what we call the free-energy insurate with a close-packed lattice and no crystalline mini-
crementAf and then perform a MC simulation in which we mum of the free energy is found. The total number of inho-
sweep the sites of the lattice sequentially. At each step and mogeneous minima is then about 10 and all of them exhibit
site, we pick another sitg at random from the ones that lie glassy structure as determined by the two-point correlation
within a distances from the sitei. We then attempt to function of the local density. The minima we have used as
change the values gf; and p; to p(p;+p;) and (1-p)(p;  our starting point in this case were also used in R&g].
+p;), wherep is a random number distributed uniformly in These are the minima to which the system mdvigg in the
[0,1]. The attempted change is acceptaty if the dimen- course of its time evolution under Langevin dynamit§]
sionless free energy after the change is less than,F when it is started from the uniform liquid state. Hor12
+NAf, whereF,, is the dimensionless free energfr at  we tooka=0.25 so that the sample is commensurate. It ad-
the minimum where the simulation is started. This procedurdnits a crystalline minimum that has the lowest free energy
generates a random sampling of configurations whose frefor the values ofh* considered here. The number of glassy
energy lies withilNAf of that of the glassy minimum under minima is substantially larggabout 30 in this sample. Out
consideration. The simulation proceeds up to a maximunof those we chose a few with structure similar to that of the
time t,,, of MC steps per site. At regular intervals along theminima of theL=15 sample. For both cases, the minima
evolution of the system, we use a minimization proced@te found at lower densities were “followed” to higher densities
to determine whether the system has moved to the basin d&fy running the minimization program at the higher density
attraction of a different local minimum of the free energy. using the lower density configuratidwhich is of course not
Obviously, if NAf is smaller than the lowest-free-energy a minimum at the higher densjtyas the starting point. The
barrier between the starting minimum and any other mini-values oft,, are 15000 fol.=15 and 8000 fol.=12. The
mum, the system remains in the basin of attraction of thdransition probability was calculated at time intervals of 5000
starting minimum. AsAf is increased, one begins to find in the first case and 2000 in the second case. In both cases,
transitions to other accessible minima, that is, minima thathe density range covered was 0s9d* <1.06. Higher val-
the system can find within a tintest,,,, which are separated ues ofn* were not considered because the Percus-Yevick
from the initial one by a barrier of height less tham\f. approximation then becomé8] inaccurate.
Repeating this procedure a number of tinfggically 10— Typical results forP are shown in Fig. 1, where data for
20) for a fixed set of values ofi*, Af, andt,,, we obtain L=12 andn* =1.04 are plotted for four different values of
P(n*,Af,t), the probability of a transition to a different The value ofAf was incremented in steps of 0.05, which is
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FIG. 2. Plots ofAf,, obtained for a_=15 minimum, against longs in the basin of attraction of a different minimum. One

(t/1000) 35 for three values of*. The dashed lines are the best €XPectsp to be zero ifAf<Afo(n*), whereNAf, is the
straight-line fits. Similar plots for & =12 minimum are shown in height of the lowest free-energy-barrier, ape-g(n*,Af
the inset. —Afy) for Af>Af,, whereg(n*,x) grows continuously
from zero asx is increased from zero. Combining this with
also the estimated uncertainty in the determinatiol\6f.  the definition of Af., we obtain the relation
The transition probability grows from zero ag is increased  9(n*,Afc(n*,t) —Afy(n*))=In2/t. Our observation that
and eventually saturates at one for sufficiently large values dhe differenceAf (n*,t;) —Af(n*,t;) for fixed t;<t; in-
Af. For a fixed value ofAf, the transition probability in- creaseswith n* then leads to the conclusion that the function
creases a$ is increased: Transitions to other minima ared(n*,x) decreased(i.e., the difficulty of finding paths to
more likely if the system is allowed to explore a larger num-other minima increasgssn* is increased at fixed.
ber of configurations. Sinc® is an increasing function of ~ The observed dependence oAf for all values ofn*
bothAf andt, Af,(n*,t) (the value ofAf whereP=0.5, as and all the minima in our study is well represented by
defined abovedecreases dsis increased. In agreement with

the previously observefl2] growth of the barrier-crossing Af(n*,t)=Afo(n*)+c(n*)t™ 7, ©)
time scale witm*, we find thatA f; is an increasing function
of n*. with « in the range 0.250.40. Typical fits to this form with

The conclusion that entropic effects play a crucial role ina=0.35 for two minima withL =15 andL =12 are shown in
the growth of the effective height of the free-energy barrierg=ig. 2. The values oA f, obtained from such fits with a fixed
stems from the observation that thedependence ofAf.  value of @ are nearly independent o, but exhibit a de-
becomesstrongerasn* is increasedsee Fig. 2 Thet de- pendence on the value of, varying between 0 and 0.5 for
pendence ofAf is clearly related to the probability of find- the L=15 minimum and between 1.3 and 1.5 for the
ing the saddle points that connect the starting minimum with=12 minimum of Fig. 2. The quantitg(n*) increases with
other minima. If such paths were relatively easy to find, them*. This corresponds to the functiag(n*,x) having the
the transition probability would be insensitive to the value ofform g(n* ,x)~A(n*)xY¢, with A(n*) decreasing with in-

t as long as it is not very short. If, however, paths to othercreasingn*. These results imply thag) the lowest barrier
minima are few, a large number of configurations have to béieightNAf is nearly independentf n* and(b) for a fixed
explored before one of them is found. Thelependence of small positive value oA f— Af, the probability of finding a
Af. would then be more pronounced and extend to largesaddle point to other minimdecreasessn* is increased.
values oft. To make the idea more concrete, we ignore theWe conclude from these observations that the growth of the
correlations(which are short range in timemong the con- effective barrier height with increasimy is primarily due to
figurations generated in a MC run and assume that they re@an entropic mechanism associated with an increase of the
resentt independent samplings of configurations with freedifficulty in finding low-lying saddle points that connect dif-
energy less thafr,;,+ NAf. Let us also assume that the ferent glassy local minimum. This conclusion is consistent
system does not return to the basin of attraction of the startwith the canonical MC results of Rdf12], where we found

ing minimum after a transition to a different basin of at- that while the time scale of transitions between minima in-
traction. We find that a return to the original basin of attrac-creases dramatically with*, the free-energy increment at
tion is indeed very rare. The transition probability may the transition point remains essentially independent’of

then be estimated a(n*,Af,t)=1—-[1—p(n*,Af)] Our results for the dependence &f, on n* are consis-
=1—exp(-tp), wherep(n*,Af)<1 is the probability that a tent with the Vogel-Fulcher la3], which assumes the fol-
randomly chosen configuration witBF<F,;,+NAf be- lowing form [14] for our system:
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(4)

wherea andb are constants andf} is expected to be close
to the random close-packing density.,~1.23. There is
some ambiguity in trying to fit our data to this form because
our values ofA f. depend weakly on the tinmte However, the
value ofn¥ obtained from fits of our data fakf (n*,t) to

Eq. (4) with fixed a is nearly independent daf This is con-
sistent with the form of Eq(3) if a=Afy, bxt™%, andc

o« 1/(nf —n*). Afy is indeed nearly independent of and
thet dependence ob and then* dependence of are in
agreement with the other two conditions. For the 15 case,
we can fit the data foA f, att= 15000 to the form of Eq4)
with a=0(Afy=0). The best fit, shown in Fig. 3, corre-
sponds ton} =1.225, very close to the expected result. The
best fit to theL=12 data witha=1.0 (the difference be-
tween the values ok f, for theL=12 andL =15 minima is
about 1.0 also yields a similar value of? . So we conclude

Af (n*)=a+b/(n}—n*),
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that the observed growth of the effective barrier height is
consistent with the Vogel-Fulcher form. The increase in the
effective barrier height as* is increased from 0.94 to 1.06

is about 2&gT, corresponding to a growth of the character-

istic time scale of about ten orders of magnitude. Thus the
range of time scales covered in our study is comparable to
that used in Vogel-Fulcher fits of experimental data and
much wider than what can be achieved in standard MC or
molecular dynamics simulations.

In summary, our study demonstrates that the Vogel-
Fulcher—type growth of relaxation times in simple glassy
liquids is primarily entropic in origin, the underlying mecha-
nism being an increase in the difficulty of encountering low-
lying saddle points that connect different glassy local
minima of the free energy.
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